MATH-820 Calculus of Variations and Optimal Control

Credit Hours: 3-0 Prerequisite: None

Course Objectives: The major purpose of this course is to present theoretical ideas and analytic and numerical methods to enable the students to understand and efficiently solve optimization problems.

Core Contents: The Finite dimensional problem: The free problem. Equality constrained problem. The inequality constrained problem, Newton's Method. The basic theory of the calculus of variations: Introduction, Some examples. Critical point conditions. Additional necessary conditions. Miscellaneous results. Sufficiency theory. Several dependent variables.Optimal control, The minimal time problem, Unconstrained Reformulations. Constrained calculus of variations problems. Kuhn- Tucker reformulation. Numerical methods and results.Kuhn-Tucker method. Introduction to fractional calculus. Fractional calculus of variations, Fractional Euler–Lagrange equations

Course Outcomes: Students are expected to understand:

- The theory of the calculus of variations.
- The optimal control problems.
- Numerical methods and results for optimization.
- Fractional calculus of variations.

Text Book:

- 1. John Gregory, Cantian Lin, Constrained Optimization in the Calculus of Variations and Optimal Control Theory, Springer (1992).
- 2. Ricardo Almeida, Dina Tavares Delfim F. M. Torres, (RAD) The Variable-Order FractionalCalculus of Variations, Springer 2019.

Reference Books:

1. M. D. Intriligator, Mathematical Optimization and Economic Theory, Siam

(2002).

- 2. Pablo Pedregal, Optimization and Approximation, Springer (2017)
- 3. Daniel Liberzon, Calculus of Variations and Optimal Control Theory, PRINCETONUNIVERSITY PRESS, (2012).

Nature of assessment	Frequency	Weightage (%age)
Quizzes	Minimum 3	10-15
Assignments	-	5-10
Midterm	1	25-35
End Semester	1	40-50
Examination		
Project(s)	-	10-20

ASSESSMENT SYSTEM

Weekly Breakdown				
Week	Sectio	Topics		
	n			
1	1.1,1.2	The Finite dimensional problem: The free problem, The equality constrained problem.		
2	1.3, 1.4	The inequality constrained problem, Newton's Method.		
3	2.1-2.3	The basic theory of the calculus of variations: Introduction, Some examples		
4	2.3	Critical point conditions.		
5	2.4, 3.1	Additional necessary conditions, Miscellaneous results		
6	3.2	Sufficiency theory.		
7	3.3	Several dependent variables.		
8	4.1	Optimal control: A basic problem		
9	Mid Sen	nester Exam		
10	4.2, 5.1	The minimal time problem: An example of abnormality.		
		UnconstrainedReformulations: The optimal control problems.		
11	5.2,5.3	Constrained calculus of variations problems, Kuhn-Tucker reformulation		

12	6.1	Numerical methods and results: The basic Problem in calculus of variations	
13	6.2	Numerical transversality conditions for general problems	
14	6.3	Kuhn-Tucker method	
15	2.1,2. 2 (RAD)	Introduction to fractional calculus	
16	3.2	Fractional calculus of variations, Fractional Euler–Lagrange equations	
17		Review	
18	End S	End Semester Exam	